
Final Exam — Ordinary Differential Equations (WIGDV–07)

Wednesday 2 November 2016, 14.00h–17.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (10 points)

Solve the following differential equation for x > 0:

x2y′ = y2 − 6xy + 12x2.

Problem 2 (3 + 4 + 3 points)

Assume that the function u : [1,∞) → R is continuous and satisfies the following
inequality:

u(x) ≤ x2 +

∫ x

1

u(t)

t
dt for all x ≥ 1.

We define two new functions:

y(x) =

∫ x

1

u(t)

t
dt and φ(x) = u(x)− y(x).

(a) Show that y satisfies the following linear initial value problem:

y′ −
y

x
=

φ(x)

x
, y(1) = 0.

(b) Compute y in terms of an integral and the function φ.

(c) Prove that u(x) ≤ 2x2 − x for all x ≥ 1.

Problem 3 (6 + 6 + 4 + 4 points)

Let C([0, 1]) denote the linear space of all continuous functions y : [0, 1] → R. This
space becomes a Banach space with the norm

‖y‖ = sup
{

|y(x)| : x ∈ [0, 1]
}

.

Consider the integral operator

T : C([0, 1]) → C([0, 1]), (Ty)(x) = 1 + 1
2
x− 1

4
sin(2x)−

∫ x

0

(x− t)y(t) dt.
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(a) Prove that if Ty = y, then y satisfies the following initial value problem:

y′′ + y = sin(2x), y(0) = 1, y′(0) = 0.

(b) Prove that ‖Ty−Tz‖ ≤ 1
2
‖y−z‖ for all y, z ∈ C([0, 1]). (Hint:

∫ x

0
x−t dt = 1

2
x2.)

(c) Formulate Banach’s fixed point theorem.

(d) Prove that T has a unique fixed point.

Problem 4 (4 + 6 + 10 points)

Consider the following initial value problem:

y′ = Ay + b(t), y(τ) = η,

where A is a constant n× n matrix.

(a) Explain why eAt is a fundamental matrix for the homogeneous equation.

(b) Use variation of constants to prove that the solution is given by

y(t) = eA(t−τ)
η +

∫ t

τ

eA(t−s)b(s) ds.

(c) Compute eAt for the 2× 2 matrix A =

[

−3 4
−1 1

]

.

Problem 5 (12 points)

Consider the following 3rd order equation:

u′′′ + u′′ + 8u′ − 10u = 6− 20x− 13ex.

Compute the general solution. If the solution is complex-valued, then also give the
solution in real form.

Problem 6 (18 points)

Compute all eigenvalues λ ∈ R and corresponding eigenfunctions u of the following
boundary value problem:

−x2u′′ − 2xu′ = λu, 1 < x < e, u(1) = 0, u(e) = 0.

Hint: try solutions of the form u(x) = xr. Treat the cases λ < 1
4
, λ = 1

4
, and λ > 1

4

separately.

End of test (90 points)

— Page 2 of 12 —



Solution of Problem 1 (10 points)

Method 1: using a y/x substitution. We can rewrite the equation as

y′ =
(y

x

)2

− 6
(y

x

)

+ 12.

Setting u = y/x gives the following differential equation:

u′ =
y′ − u

x
=

u2 − 7u+ 12

x
.

Separation of variables gives

∫

1

u2 − 7u+ 12
du =

∫

1

x
dx.

(3 points)

Partial fraction expansion gives

1

u2 − 7u+ 12
=

1

(u− 4)(u− 3)
=

1

u− 4
−

1

u− 3
.

Hence, computing integrals gives:

log |u− 4| − log |u− 3| = log |x|+ C ⇒ log

∣

∣

∣

∣

u− 4

u− 3

∣

∣

∣

∣

= log x+ C.

where we use that |x| = x since we assume that x > 0.
(4 points)

Taking exponentials gives
u− 4

u− 3
= Kx.

where K = ±eC or K = 0 is another arbitrary constant. Solving for u gives

u =
4− 3Kx

1−Kx
.

Finally, the solution for y is given by

y = xu =
4x− 3Kx2

1−Kx
.

(3 points)
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Method 2: using the Riccati method. The equation is of Riccati type and it
is easy to check that φ(x) = 4x is a solution.
(1 point)

Now u = y − φ satisfies the following Bernoulli equation:

u′ =
u2

x2
+

2u

x
.

(2 points)

Then z = 1/u satisfies the following linear equation:

z′ +
2

x
z = −

1

x2
.

(2 points)

The solution is given by

z =
C

x2
−

1

x
=

C − x

x2
,

where C is an arbitrary constant.
(3 points)

Finally, the general solution of y is given by

y = u+ 4x =
1

z
+ 4x =

x2

C − x
+ 4x =

4Cx− 3x2

C − x
.

(2 points)

Remark: the Riccati equation can also be solved using φ(x) = 3x. In fact, this is
slightly easier since the equation for u then reads as

u′ =
u2

x2
,

which can be solved immediately using separation of variables without reduction to
a linear equation.
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Solution of Problem 2 (3 + 4 + 3 points)

(a) It trivially follows that y(1) = 0. The fundamental theorem of calculus gives

y′(x) =
u(x)

x
=

y(x) + φ(x)

x
⇒ y′(x)−

y(x)

x
=

φ(x)

x
.

(3 points)

(b) Multiplying the differential equation with 1/x gives

1

x
y′ −

1

x2
y =

φ

x2
⇒

(y

x

)

′

=
φ

x2
⇒ y(x) = x

∫ x

1

φ(t)

t2
dt.

(4 points)

(c) It is given that φ(x) ≤ x2 for all x ≥ 1. Therefore, using the monotonicity
property of the integral, we get

∫ x

1

φ(t)

t2
dt ≤

∫ x

1

t2

t2
dt =

∫ x

1

dt = x− 1,

which gives

y(x) ≤ x

∫ x

1

dt = x2 − x for all x ≥ 1.

(2 points)

This implies that

u(x) ≤ x2 + y(x) ≤ 2x2 − x for all x ≥ 1.

(1 point)
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Solution of Problem 3 (6 + 6 + 4 + 4 points)

(a) Assume that Ty = y, or, equivalently,

y(x) = 1 + 1
2
x− 1

4
sin(2x)− x

∫ x

0

y(t) dt+

∫ x

0

ty(t) dt.

In particular, setting x = 0 gives y(0) = 1.
(1 point)

Differentiating once gives

y′(x) = 1
2
− 1

2
cos(2x)−

∫ x

0

y(t) dt.

(2 points)

In particular, setting x = 0 gives y′(0) = 0.
(1 point)

Differentiating once more gives

y′′(x) = sin(2x)− y(x).

(2 points)

(b) Let y, z ∈ C([0, 1]) be arbitrary. For all x ∈ [0, 1] we have

|(Ty)(x)− (Tz)(x)| =

∣

∣

∣

∣

∫ x

0

(x− t)(y(t)− z(t)) dt

∣

∣

∣

∣

≤

∫ x

0

(x− t)|y(t)− z(t)| dt (note: 0 ≤ t ≤ x ⇒ x− t ≥ 0)

≤

∫ x

0

(x− t)‖y − z‖ dt

= ‖y − z‖

∫ x

0

(x− t) dt

= 1
2
x2‖y − z‖

≤ 1
2
‖y − z‖.

(4 points)

Therefore, taking the supremum over all x ∈ [0, 1] gives

‖Ty − Tz‖ = sup
x∈[0,1]

|(Ty)(x)− (Tz)(x)| ≤ 1
2
‖y − z‖.

(2 points)

(c) Let D be a closed, nonempty subset in a Banach space B. Let the operator T :
D → B map D into itself, i.e., T (D) ⊂ D, and assume that T is a contraction:
there exists a number 0 < q < 1 such that

‖Tx− Ty‖ ≤ q‖x− y‖, ∀ x, y ∈ D,
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Then the fixed point equation Tx = x has precisely one solution x̄ ∈ D.
(4 points)

Moreover, iterations of T converge to this fixed point:

x0 ∈ D, xn+1 = Txn ⇒ lim
n→∞

xn = x̄.

(The last statement is not relevant to this problem.)

(d) We take D = B = C([0, 1]) and we let T : B → B be as defined above. Part
(b) shows that T is a contraction (we can take q = 1

2
). Therefore, all the

assumptions of Banach’s fixed point theorem are satisfied. This implies that T
has a unique fixed point.
(4 points)
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Solution of Problem 4 (4 + 6 + 10 points)

(a) We have that (eAt)′ = AeAt, which means that every column of eAt satisfies the
homogeneous equation y′ = Ay.
(2 points)

In addition, eAt is invertible (the inverse is given by e−At), which implies that
the columns of eAt are linearly independent.
(2 points)

(b) We try to find a particular solution of the form yp = eAtv(t). On the one hand
we have

y′

p = AeAtv + eAtv′ = Ayp + eAtv′.

(1 point)

On the other hand, if yp solves the inhomogeneous equation, we have

y′

p = Ayp + b(t).

Therefore, it follows that

eAtv′(t) = b(t) ⇒ v′(t) = e−Atb(t) ⇒ v(t) =

∫ t

τ

e−Asb(s) ds

(3 points)

The general solution is then given by

y = eAtc+ yp = eAtc+ eAt

∫ t

τ

e−Asb(s) ds = eAtc+

∫ t

τ

eA(t−s)b(s) ds,

where c ∈ R
n is an arbitrary vector.

(1 points)

Finally, the initial condition y(τ) = η implies that c = e−Aτ
η, which completes

the proof.
(1 point)

(c) The characteristic polynomial is given by

det(A− λI) =

[

−3 − λ 4
−1 1− λ

]

= (λ+ 1)2.

Therefore, λ = −1 is an eigenvalue with multiplicity 2. The generalized eigen-
spaces of A are given by:

A+ I =

[

−2 4
−1 2

]

∼

[

1 −2
0 0

]

⇒ E1
λ = Span

{[

2
1

]}

(2 points)

(A+ I)2 =

[

0 0
0 0

]

⇒ E2
λ = Span

{[

1
0

]

,

[

0
1

]}
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(2 points)

Therefore, the dot diagram is given by

r1 = dimE1
λ = 1

r2 = dimE2
λ − dimE1

λ = 1

}

⇒
•
•

which means that we have one cycle of length 2. In particular, we obtain

J =

[

−1 1
0 −1

]

(2 points)

To construct the matrix Q we start by taking a vector v ∈ E2
λ\E

1
λ. For example,

we can take

v =

[

1
0

]

⇒ (A + I)v =

[

−2
−1

]

.

Listing these vectors in reverse(!) order gives

Q =

[

−2 1
−1 0

]

.

(2 points)

Finally, since A = QJQ−1 we get

eAt = QeJtQ−1 =

[

−2 1
−1 0

] [

e−t te−t

0 e−t

] [

0 −1
1 −2

]

= e−t

[

1− 2t 4t
−t 1 + 2t

]

.

(2 points)
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Solution of Problem 5 (12 points)

First we solve the homogeneous equation:

u′′′ + u′′ + 8u′ − 10u = 0.

Using the Ansatz u(x) = eλx we get the following characteristic equation

λ3 + λ2 + 8λ− 10 = 0.

It is easy to guess that λ = 1 is a root. By means of a long divison we get

(λ− 1)(λ2 + 2λ+ 10) = 0 ⇔ (λ− 1)((λ+ 1)2 + 9) = 0.

Hence, the roots are λ = 1 and λ = −1± 3i. Therefore, the homogeneous equation
has the following solution:

uh(x) = c1e
x + c2e

(−1+3i)x + c2e(−1−3i)x.

(4 points for correct uh)

As a particular solution we try the following:

up(x) = Ax+B + Cxex,

u′

p(x) = A+ C(x+ 1)ex,

u′′

p(x) = C(x+ 2)ex,

u′′′

p (x) = C(x+ 3)ex.

(2 points for a correct Ansatz)

Substitution into the equation gives

−10B + 8A− 10Ax+ 13Cex = 6− 20x− 13ex.

Comparing like terms on both sides gives A = 2, B = 1, and C = −1.
(4 points for correct coefficients)

Finally, the general solution in real form is given by

u(x) = uh(x) + up(x) = c1e
x + c2e

−x cos(3x) + c3e
−x sin(3x) + 1 + 2x− xex.

(2 points)
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Solution of Problem 6 (18 points)

Using the Ansatz u(x) = xr gives the following characteristic equation:

r2 + r + λ = 0 ⇒ (r + 1
2
)2 + λ− 1

4
= 0 ⇒ r1,2 = −1

2
±

√

1
4
− λ.

(2 points)

We now have to consider three different cases:

Case 1: λ < 1
4
. In this case the roots are real and distinct. The general solution of

the differential equation is given by

u(x) = c1x
r1 + c2x

r2 .

The boundary conditions give
[

1 1
er1 er2

] [

c1
c2

]

=

[

0
0

]

.

Since r1 6= r2 we have that the determinant of the coefficient matrix is nonzero.
This implies that c1 = c2 = 0, and thus u(x) ≡ 0. Since we only obtain trivial
solutions we conclude that λ < 1

4
is not an eigenvalue!

(4 points)

Case 2: λ = 1
4
. In this case we have r1 = r2 = −1

2
and we only find one solution,

namely u(x) = x−1/2. Then it follows from the theory of Euler equations that
v(x) = x−1/2 log x is a second solution. (Alternatively, this can be checked by
reduction of order; see below.)
(3 points)

Hence, the general solution is

u(x) = c1x
−1/2 + c2x

−1/2 log x.

The boundary conditions give
[

1 0
e−1/2 e−1/2

] [

c1
c2

]

=

[

0
0

]

.

Since the coefficient matrix has a nonzero determinant, it follows that c1 =
c2 = 0 and thus u(x) ≡ 0. Since we only obtain trivial solutions we conclude
that λ = 1

4
is not an eigenvalue!

(3 points)

We apply reduction of order to find a second solution:

v(x) = c(x)x−1/2

v′(x) = c′(x)x−1/2 − 1
2
c(x)x−3/2

v′′(x) = c′′(x)x−1/2 − c′(x)x−3/2 + 3
4
c(x)x−5/2

Therefore,
−x2v′′ − 2xv′ = 1

4
v ⇒ c′′(x)x+ c′(x) = 0.

As a solution we can take c(x) = log x so that v(x) = x−1/2 log x.
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Case 3: λ > 1
4
. In this case the roots form a complex conjugate pair:

r1,2 = −1
2
± ωi where ω =

√

λ− 1
4
> 0.

The general solution, in real-valued form, is therefore given by

u(x) = c1x
−1/2 cos(ω log x) + c2x

−1/2 sin(ω log x).

(3 points)

The boundary conditions give

[

1 0
e−1/2 cos(ω) e−1/2 sin(ω)

] [

c1
c2

]

=

[

0
0

]

.

Nontrivial solutions exist if and only if ω = nπ, where n = 1, 2, 3, . . . . (Recall
that ω > 0!) In this case it follows that c1 = 0 and we just take c2 = 1. In
conclusion we get the eigenvalues

λn = 1
4
+ n2π2, n = 1, 2, 3, . . .

and the corresponding eigenfunctions are

un(x) = x−1/2 sin(nπ log x).

(3 points)
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