Final Exam - Ordinary Differential Equations (WIGDV-07)

Wednesday 2 November 2016, 14.00h-17.00h
University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. If p is the number of marks then the exam grade is $G=1+p / 10$.

Problem 1 (10 points)

Solve the following differential equation for $x>0$:

$$
x^{2} y^{\prime}=y^{2}-6 x y+12 x^{2} .
$$

Problem 2 ($3+4+3$ points)

Assume that the function $u:[1, \infty) \rightarrow \mathbb{R}$ is continuous and satisfies the following inequality:

$$
u(x) \leq x^{2}+\int_{1}^{x} \frac{u(t)}{t} d t \quad \text { for all } \quad x \geq 1
$$

We define two new functions:

$$
y(x)=\int_{1}^{x} \frac{u(t)}{t} d t \quad \text { and } \quad \phi(x)=u(x)-y(x) .
$$

(a) Show that y satisfies the following linear initial value problem:

$$
y^{\prime}-\frac{y}{x}=\frac{\phi(x)}{x}, \quad y(1)=0 .
$$

(b) Compute y in terms of an integral and the function ϕ.
(c) Prove that $u(x) \leq 2 x^{2}-x$ for all $x \geq 1$.

Problem $3(6+6+4+4$ points $)$

Let $C([0,1])$ denote the linear space of all continuous functions $y:[0,1] \rightarrow \mathbb{R}$. This space becomes a Banach space with the norm

$$
\|y\|=\sup \{|y(x)|: x \in[0,1]\} .
$$

Consider the integral operator

$$
T: C([0,1]) \rightarrow C([0,1]), \quad(T y)(x)=1+\frac{1}{2} x-\frac{1}{4} \sin (2 x)-\int_{0}^{x}(x-t) y(t) d t
$$

(a) Prove that if $T y=y$, then y satisfies the following initial value problem:

$$
y^{\prime \prime}+y=\sin (2 x), \quad y(0)=1, \quad y^{\prime}(0)=0
$$

(b) Prove that $\|T y-T z\| \leq \frac{1}{2}\|y-z\|$ for all $y, z \in C([0,1])$. (Hint: $\int_{0}^{x} x-t d t=\frac{1}{2} x^{2}$.)
(c) Formulate Banach's fixed point theorem.
(d) Prove that T has a unique fixed point.

Problem $4(4+6+10$ points $)$

Consider the following initial value problem:

$$
\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{b}(t), \quad \mathbf{y}(\tau)=\boldsymbol{\eta}
$$

where A is a constant $n \times n$ matrix.
(a) Explain why $e^{A t}$ is a fundamental matrix for the homogeneous equation.
(b) Use variation of constants to prove that the solution is given by

$$
\mathbf{y}(t)=e^{A(t-\tau)} \boldsymbol{\eta}+\int_{\tau}^{t} e^{A(t-s)} \mathbf{b}(s) d s
$$

(c) Compute $e^{A t}$ for the 2×2 matrix $A=\left[\begin{array}{ll}-3 & 4 \\ -1 & 1\end{array}\right]$.

Problem 5 (12 points)

Consider the following 3rd order equation:

$$
u^{\prime \prime \prime}+u^{\prime \prime}+8 u^{\prime}-10 u=6-20 x-13 e^{x} .
$$

Compute the general solution. If the solution is complex-valued, then also give the solution in real form.

Problem 6 (18 points)

Compute all eigenvalues $\lambda \in \mathbb{R}$ and corresponding eigenfunctions u of the following boundary value problem:

$$
-x^{2} u^{\prime \prime}-2 x u^{\prime}=\lambda u, \quad 1<x<e, \quad u(1)=0, \quad u(e)=0 .
$$

Hint: try solutions of the form $u(x)=x^{r}$. Treat the cases $\lambda<\frac{1}{4}, \lambda=\frac{1}{4}$, and $\lambda>\frac{1}{4}$ separately.

End of test (90 points)

Solution of Problem 1 (10 points)

Method 1: using a y / x substitution. We can rewrite the equation as

$$
y^{\prime}=\left(\frac{y}{x}\right)^{2}-6\left(\frac{y}{x}\right)+12
$$

Setting $u=y / x$ gives the following differential equation:

$$
u^{\prime}=\frac{y^{\prime}-u}{x}=\frac{u^{2}-7 u+12}{x} .
$$

Separation of variables gives

$$
\int \frac{1}{u^{2}-7 u+12} d u=\int \frac{1}{x} d x
$$

(3 points)

Partial fraction expansion gives

$$
\frac{1}{u^{2}-7 u+12}=\frac{1}{(u-4)(u-3)}=\frac{1}{u-4}-\frac{1}{u-3} .
$$

Hence, computing integrals gives:

$$
\log |u-4|-\log |u-3|=\log |x|+C \quad \Rightarrow \quad \log \left|\frac{u-4}{u-3}\right|=\log x+C
$$

where we use that $|x|=x$ since we assume that $x>0$.

(4 points)

Taking exponentials gives

$$
\frac{u-4}{u-3}=K x
$$

where $K= \pm e^{C}$ or $K=0$ is another arbitrary constant. Solving for u gives

$$
u=\frac{4-3 K x}{1-K x} .
$$

Finally, the solution for y is given by

$$
y=x u=\frac{4 x-3 K x^{2}}{1-K x} .
$$

(3 points)

Method 2: using the Riccati method. The equation is of Riccati type and it is easy to check that $\phi(x)=4 x$ is a solution.
(1 point)
Now $u=y-\phi$ satisfies the following Bernoulli equation:

$$
u^{\prime}=\frac{u^{2}}{x^{2}}+\frac{2 u}{x} .
$$

(2 points)

Then $z=1 / u$ satisfies the following linear equation:

$$
z^{\prime}+\frac{2}{x} z=-\frac{1}{x^{2}}
$$

(2 points)

The solution is given by

$$
z=\frac{C}{x^{2}}-\frac{1}{x}=\frac{C-x}{x^{2}},
$$

where C is an arbitrary constant.

(3 points)

Finally, the general solution of y is given by

$$
y=u+4 x=\frac{1}{z}+4 x=\frac{x^{2}}{C-x}+4 x=\frac{4 C x-3 x^{2}}{C-x} .
$$

(2 points)

Remark: the Riccati equation can also be solved using $\phi(x)=3 x$. In fact, this is slightly easier since the equation for u then reads as

$$
u^{\prime}=\frac{u^{2}}{x^{2}}
$$

which can be solved immediately using separation of variables without reduction to a linear equation.

Solution of Problem $2(3+4+3$ points $)$
(a) It trivially follows that $y(1)=0$. The fundamental theorem of calculus gives

$$
y^{\prime}(x)=\frac{u(x)}{x}=\frac{y(x)+\phi(x)}{x} \Rightarrow y^{\prime}(x)-\frac{y(x)}{x}=\frac{\phi(x)}{x} .
$$

(3 points)
(b) Multiplying the differential equation with $1 / x$ gives

$$
\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=\frac{\phi}{x^{2}} \quad \Rightarrow \quad\left(\frac{y}{x}\right)^{\prime}=\frac{\phi}{x^{2}} \quad \Rightarrow \quad y(x)=x \int_{1}^{x} \frac{\phi(t)}{t^{2}} d t .
$$

(4 points)

(c) It is given that $\phi(x) \leq x^{2}$ for all $x \geq 1$. Therefore, using the monotonicity property of the integral, we get

$$
\int_{1}^{x} \frac{\phi(t)}{t^{2}} d t \leq \int_{1}^{x} \frac{t^{2}}{t^{2}} d t=\int_{1}^{x} d t=x-1
$$

which gives

$$
y(x) \leq x \int_{1}^{x} d t=x^{2}-x \quad \text { for all } \quad x \geq 1
$$

(2 points)

This implies that

$$
u(x) \leq x^{2}+y(x) \leq 2 x^{2}-x \quad \text { for all } \quad x \geq 1
$$

(1 point)

Solution of Problem $3(6+6+4+4$ points)
(a) Assume that $T y=y$, or, equivalently,

$$
y(x)=1+\frac{1}{2} x-\frac{1}{4} \sin (2 x)-x \int_{0}^{x} y(t) d t+\int_{0}^{x} t y(t) d t
$$

In particular, setting $x=0$ gives $y(0)=1$.
(1 point)
Differentiating once gives

$$
y^{\prime}(x)=\frac{1}{2}-\frac{1}{2} \cos (2 x)-\int_{0}^{x} y(t) d t
$$

(2 points)

In particular, setting $x=0$ gives $y^{\prime}(0)=0$.
(1 point)
Differentiating once more gives

$$
y^{\prime \prime}(x)=\sin (2 x)-y(x) .
$$

(2 points)
(b) Let $y, z \in C([0,1])$ be arbitrary. For all $x \in[0,1]$ we have

$$
\begin{aligned}
|(T y)(x)-(T z)(x)| & =\left|\int_{0}^{x}(x-t)(y(t)-z(t)) d t\right| \\
& \leq \int_{0}^{x}(x-t)|y(t)-z(t)| d t \quad(\text { note: } 0 \leq t \leq x \Rightarrow x-t \geq 0) \\
& \leq \int_{0}^{x}(x-t)\|y-z\| d t \\
& =\|y-z\| \int_{0}^{x}(x-t) d t \\
& =\frac{1}{2} x^{2}\|y-z\| \\
& \leq \frac{1}{2}\|y-z\|
\end{aligned}
$$

(4 points)

Therefore, taking the supremum over all $x \in[0,1]$ gives

$$
\|T y-T z\|=\sup _{x \in[0,1]}|(T y)(x)-(T z)(x)| \leq \frac{1}{2}\|y-z\| .
$$

(2 points)

(c) Let D be a closed, nonempty subset in a Banach space B. Let the operator T : $D \rightarrow B$ map D into itself, i.e., $T(D) \subset D$, and assume that T is a contraction: there exists a number $0<q<1$ such that

$$
\|T x-T y\| \leq q\|x-y\|, \quad \forall x, y \in D
$$

Then the fixed point equation $T x=x$ has precisely one solution $\bar{x} \in D$. (4 points)
Moreover, iterations of T converge to this fixed point:

$$
x_{0} \in D, \quad x_{n+1}=T x_{n} \quad \Rightarrow \quad \lim _{n \rightarrow \infty} x_{n}=\bar{x}
$$

(The last statement is not relevant to this problem.)
(d) We take $D=B=C([0,1])$ and we let $T: B \rightarrow B$ be as defined above. Part (b) shows that T is a contraction (we can take $q=\frac{1}{2}$). Therefore, all the assumptions of Banach's fixed point theorem are satisfied. This implies that T has a unique fixed point.
(4 points)

Solution of Problem $4(4+6+10$ points $)$
(a) We have that $\left(e^{A t}\right)^{\prime}=A e^{A t}$, which means that every column of $e^{A t}$ satisfies the homogeneous equation $\mathbf{y}^{\prime}=A \mathbf{y}$.
(2 points)
In addition, $e^{A t}$ is invertible (the inverse is given by $e^{-A t}$), which implies that the columns of $e^{A t}$ are linearly independent.
(2 points)
(b) We try to find a particular solution of the form $\mathbf{y}_{p}=e^{A t} \mathbf{v}(t)$. On the one hand we have

$$
\mathbf{y}_{p}^{\prime}=A e^{A t} \mathbf{v}+e^{A t} \mathbf{v}^{\prime}=A \mathbf{y}_{p}+e^{A t} \mathbf{v}^{\prime}
$$

(1 point)
On the other hand, if \mathbf{y}_{p} solves the inhomogeneous equation, we have

$$
\mathbf{y}_{p}^{\prime}=A \mathbf{y}_{p}+\mathbf{b}(t)
$$

Therefore, it follows that

$$
e^{A t} \mathbf{v}^{\prime}(t)=\mathbf{b}(t) \quad \Rightarrow \quad \mathbf{v}^{\prime}(t)=e^{-A t} \mathbf{b}(t) \quad \Rightarrow \quad \mathbf{v}(t)=\int_{\tau}^{t} e^{-A s} \mathbf{b}(s) d s
$$

(3 points)

The general solution is then given by

$$
\mathbf{y}=e^{A t} \mathbf{c}+\mathbf{y}_{p}=e^{A t} \mathbf{c}+e^{A t} \int_{\tau}^{t} e^{-A s} \mathbf{b}(s) d s=e^{A t} \mathbf{c}+\int_{\tau}^{t} e^{A(t-s)} \mathbf{b}(s) d s
$$

where $\mathbf{c} \in \mathbb{R}^{n}$ is an arbitrary vector.
(1 points)
Finally, the initial condition $\mathbf{y}(\tau)=\boldsymbol{\eta}$ implies that $\mathbf{c}=e^{-A \tau} \boldsymbol{\eta}$, which completes the proof.
(1 point)
(c) The characteristic polynomial is given by

$$
\operatorname{det}(A-\lambda I)=\left[\begin{array}{cc}
-3-\lambda & 4 \\
-1 & 1-\lambda
\end{array}\right]=(\lambda+1)^{2}
$$

Therefore, $\lambda=-1$ is an eigenvalue with multiplicity 2 . The generalized eigenspaces of A are given by:

$$
A+I=\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right] \sim\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \quad \Rightarrow \quad E_{\lambda}^{1}=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
$$

(2 points)

$$
(A+I)^{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \Rightarrow E_{\lambda}^{2}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

(2 points)

Therefore, the dot diagram is given by

$$
\left.\begin{array}{l}
r_{1}=\operatorname{dim} E_{\lambda}^{1}=1 \\
r_{2}=\operatorname{dim} E_{\lambda}^{2}-\operatorname{dim} E_{\lambda}^{1}=1
\end{array}\right\} \Rightarrow
$$

which means that we have one cycle of length 2 . In particular, we obtain

$$
J=\left[\begin{array}{rr}
-1 & 1 \\
0 & -1
\end{array}\right]
$$

(2 points)

To construct the matrix Q we start by taking a vector $\mathbf{v} \in E_{\lambda}^{2} \backslash E_{\lambda}^{1}$. For example, we can take

$$
\mathbf{v}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \Rightarrow \quad(A+I) \mathbf{v}=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]
$$

Listing these vectors in reverse(!) order gives

$$
Q=\left[\begin{array}{ll}
-2 & 1 \\
-1 & 0
\end{array}\right]
$$

(2 points)

Finally, since $A=Q J Q^{-1}$ we get

$$
e^{A t}=Q e^{J t} Q^{-1}=\left[\begin{array}{ll}
-2 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
e^{-t} & t e^{-t} \\
0 & e^{-t}
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & -2
\end{array}\right]=e^{-t}\left[\begin{array}{cc}
1-2 t & 4 t \\
-t & 1+2 t
\end{array}\right] .
$$

(2 points)

Solution of Problem 5 (12 points)

First we solve the homogeneous equation:

$$
u^{\prime \prime \prime}+u^{\prime \prime}+8 u^{\prime}-10 u=0 .
$$

Using the Ansatz $u(x)=e^{\lambda x}$ we get the following characteristic equation

$$
\lambda^{3}+\lambda^{2}+8 \lambda-10=0 .
$$

It is easy to guess that $\lambda=1$ is a root. By means of a long divison we get

$$
(\lambda-1)\left(\lambda^{2}+2 \lambda+10\right)=0 \quad \Leftrightarrow \quad(\lambda-1)\left((\lambda+1)^{2}+9\right)=0
$$

Hence, the roots are $\lambda=1$ and $\lambda=-1 \pm 3 i$. Therefore, the homogeneous equation has the following solution:

$$
u_{h}(x)=c_{1} e^{x}+c_{2} e^{(-1+3 i) x}+c^{2} e^{(-1-3 i) x} \text {. }
$$

(4 points for correct u_{h})

As a particular solution we try the following:

$$
\begin{aligned}
u_{p}(x) & =A x+B+C x e^{x}, \\
u_{p}^{\prime}(x) & =A+C(x+1) e^{x}, \\
u_{p}^{\prime \prime}(x) & =C(x+2) e^{x}, \\
u_{p}^{\prime \prime \prime}(x) & =C(x+3) e^{x} .
\end{aligned}
$$

(2 points for a correct Ansatz)

Substitution into the equation gives

$$
-10 B+8 A-10 A x+13 C e^{x}=6-20 x-13 e^{x} .
$$

Comparing like terms on both sides gives $A=2, B=1$, and $C=-1$.
(4 points for correct coefficients)
Finally, the general solution in real form is given by

$$
u(x)=u_{h}(x)+u_{p}(x)=c_{1} e^{x}+c_{2} e^{-x} \cos (3 x)+c_{3} e^{-x} \sin (3 x)+1+2 x-x e^{x} .
$$

(2 points)

Solution of Problem 6 (18 points)

Using the Ansatz $u(x)=x^{r}$ gives the following characteristic equation:

$$
r^{2}+r+\lambda=0 \quad \Rightarrow \quad\left(r+\frac{1}{2}\right)^{2}+\lambda-\frac{1}{4}=0 \quad \Rightarrow \quad r_{1,2}=-\frac{1}{2} \pm \sqrt{\frac{1}{4}-\lambda}
$$

(2 points)

We now have to consider three different cases:
Case 1: $\lambda<\frac{1}{4}$. In this case the roots are real and distinct. The general solution of the differential equation is given by

$$
u(x)=c_{1} x^{r_{1}}+c_{2} x^{r_{2}} .
$$

The boundary conditions give

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{r_{1}} & e^{r_{2}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Since $r_{1} \neq r_{2}$ we have that the determinant of the coefficient matrix is nonzero. This implies that $c_{1}=c_{2}=0$, and thus $u(x) \equiv 0$. Since we only obtain trivial solutions we conclude that $\lambda<\frac{1}{4}$ is not an eigenvalue!
(4 points)
Case 2: $\lambda=\frac{1}{4}$. In this case we have $r_{1}=r_{2}=-\frac{1}{2}$ and we only find one solution, namely $u(x)=x^{-1 / 2}$. Then it follows from the theory of Euler equations that $v(x)=x^{-1 / 2} \log x$ is a second solution. (Alternatively, this can be checked by reduction of order; see below.)

(3 points)

Hence, the general solution is

$$
u(x)=c_{1} x^{-1 / 2}+c_{2} x^{-1 / 2} \log x .
$$

The boundary conditions give

$$
\left[\begin{array}{cc}
1 & 0 \\
e^{-1 / 2} & e^{-1 / 2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Since the coefficient matrix has a nonzero determinant, it follows that $c_{1}=$ $c_{2}=0$ and thus $u(x) \equiv 0$. Since we only obtain trivial solutions we conclude that $\lambda=\frac{1}{4}$ is not an eigenvalue!
(3 points)
We apply reduction of order to find a second solution:

$$
\begin{aligned}
v(x) & =c(x) x^{-1 / 2} \\
v^{\prime}(x) & =c^{\prime}(x) x^{-1 / 2}-\frac{1}{2} c(x) x^{-3 / 2} \\
v^{\prime \prime}(x) & =c^{\prime \prime}(x) x^{-1 / 2}-c^{\prime}(x) x^{-3 / 2}+\frac{3}{4} c(x) x^{-5 / 2}
\end{aligned}
$$

Therefore,

$$
-x^{2} v^{\prime \prime}-2 x v^{\prime}=\frac{1}{4} v \quad \Rightarrow \quad c^{\prime \prime}(x) x+c^{\prime}(x)=0 .
$$

As a solution we can take $c(x)=\log x$ so that $v(x)=x^{-1 / 2} \log x$.

Case 3: $\lambda>\frac{1}{4}$. In this case the roots form a complex conjugate pair:

$$
r_{1,2}=-\frac{1}{2} \pm \omega i \quad \text { where } \quad \omega=\sqrt{\lambda-\frac{1}{4}}>0
$$

The general solution, in real-valued form, is therefore given by

$$
u(x)=c_{1} x^{-1 / 2} \cos (\omega \log x)+c_{2} x^{-1 / 2} \sin (\omega \log x)
$$

(3 points)

The boundary conditions give

$$
\left[\begin{array}{cc}
1 & 0 \\
e^{-1 / 2} \cos (\omega) & e^{-1 / 2} \sin (\omega)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Nontrivial solutions exist if and only if $\omega=n \pi$, where $n=1,2,3, \ldots$ (Recall that $\omega>0$!) In this case it follows that $c_{1}=0$ and we just take $c_{2}=1$. In conclusion we get the eigenvalues

$$
\lambda_{n}=\frac{1}{4}+n^{2} \pi^{2}, \quad n=1,2,3, \ldots
$$

and the corresponding eigenfunctions are

$$
u_{n}(x)=x^{-1 / 2} \sin (n \pi \log x) .
$$

(3 points)

